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Considered is the plane problem of the action of an impulsive source of pertur- 
bations on a two-layer foundation consiting of an upper, viscoelastic layer fully 
coupled to an elastic half-space. The upper boundary of the foundation is load- 
free. The impulsive source is situated within the elastic half-space at a specif- 
ied depth, and is defined in terms of the mass forces in the form of a product of 

delta functions of the coordinates and time. The investigaticn is carried out 
with the aid of Fourier and Laplace integral transforms. The displacements 
within the layer are written in the form of uniformly converging series in terms 

of the waves reflected within the layer. A viscoelastic. Boltzmann-type medi- 
um is considered as an example. 

A viscoelastic layer of thickness R covers an elastic half-space. We study the 
dynamic behavior of the layer when an impulsive source of perturbations is switched on 

within the half-space at a distance H - h from the boundary separating the layer and 

the half-space. 
The problem can be reduced to that of solving the following Cauchy equations: 

in the layer and in the half-space, respectively, with zero initial conditions and the 
following conditions and the boundary surfaces: 

2 = 0, qp = 0; z = h, r&p = ci,p, Z&.(l) = Uk’2) (2) 

where p(j) denote the densities of the media and uh.(j) are the displacements in the 

layer and half-space. The relations connecting the stresses and deformations are writt- 
en in the form 

oh.l = 6k,L (e) + 2M (Eicl) (e = uk,k, er;;, =I/2 (Uk,l + Ul,k)) (3) 

Here L and ,$I denote linear operators which are, for the viscoelastic medium 
occupying the layer, either differential with respect to time and have constant coeffi- 
cients, or integral with respect to time and have difference kernels. For the elastic 

medium of the half-space the operators L and M degenerate into the Lam6 constants 

h and p.. 
JJI solving the problem we utilize the integral Laplace transforms with respect to 

time and coordinate 2 with parameters s and p , respectively, and the integral Fourier 

transform with respect to coordinate X with parameter k. The transformed quantities 
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will be denoted by the same letters as the original quantities, and the parameters on 
which they depend will be shown. 

The mass forces vary according to the following law: 

x, = x = 0, x, = 2 = P6 (x) 6 (2 - N) & (t) 

Using the relation f3), apply~g the integral deform indicated above to the 
problem described by the second equation of (I) and ccnditions (2), (3) and taking into 
account the condition of radiation for the displacements and stresses in the half-space, 
we obtain the fo~o~g formulas for the displacements in the half-space: 

Ut”’ (k, s; z) = - ${Aexp[-v,(W-z)] -T+*((X-,s)Q1~ (4) 

exp I- Y&W- @I i- 4wbgQewk- ~aW'-wd} - 

~~A~x~[-Y~(JI’-~)]+T~*(R,s)Q~~~~[-v,(H’I_z)]- 

4k2gQ, exp [ - vbH’ - v,,z]} 

up’ (k, s; z) = - -$ (~$2) - u$ + r@ - C( “62) - f&E’ + u$, 

H’ = H - 2h 

A = T_Ao, g, = 2k” + s2v,2t g = 2k2 + s2bZ 

T,* = g2 -& 4k2v,vbr va’ = k2 + $a+, vii;) == 12’ f $b-” 

T, = g,” 3_ 4k2vpv8, vp2 = k” + s$,~, vs2 = k2 f sauas 

Expressions for As and Qi are very bulky and therefore omitted. 
Derivation of the formulas (4) and all subsequent transformations and computations 

were carried out under the a~mpt~on that 

V, / u, = b i a = v = const 

and the latter yields the relation Upa = v,b = 8. 
Each of the primary longi~~al and transverse waves arriving at the media inter- 

face from the half-space, excites a longitudinal and a transverse wave in the layer. 
To make it more convenient, we divide the displacement field in the layer into parts 
determined by the consecutive reflections of the waves from the layer boundaries and 
represented by uniformly converging series [l] (from now on we shall adopt, for conve- 
nience, the notation u,(l) = U, up(l) = w, u (k, s; z) = up +,u,, w (EC, s; z) = 
upvp I ik - u,ikl vs>. 

Let us write the formulas for up only 

up (k, s; 2) = ; 
m, ?,=(I 

a;,exp I- (n + I)@ - nzv,h + ~~~2~ -j- 

m $j_ a,, exp I- (n - 1) ~$2 - mv,h - vpz] 

a+ mrt 1 D (V,,T_p+ - Vm+, ,T+s+ - Vm_l, n,14k”gs-) 
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a,, = Q (v,,, n_2T+p- - I-,,, n-J-s- + VW, n-&%s’) 
$ I-- Bq j, vbikCaa, s+ = ikL&, t %‘&%a 

A = 2k2 (vp - v,) (63” - 1) + 2~%,b-~W 

C = 2 (k2 - v,v,) (cl” - 1) 
B = 2k2 (v, - vt) (e2 - 1) f ~s~v~~--~O* 

D = 2 (k2 - vpvb) (02 - 1) 
R = zPim= 

- , z1 = v, exp [ - v, (W $A - h)], zz = exp I--- Vi> (H - h)] 

All v/,, are given by algebraic expressions which remain, in every case, bounded as 
s -.+30 (in particular, Tr,, = 1) ) and vanish even if one of the indices r?2 or n 
assumes a negative value. The intensity of the waves reflected from the layer bound- 
aries decays rapidly, therefore the first order waves refracted into the layer and refle- 
cted from the boundary z = 0 represent the greatest interest, Assuming that m and 
FZ are both zero, we arrive at the following formulas describing the transformants of 
the displacements in the layer from the first order waves refracted into this layer: 

u (k, S; Z) = a,,” exp [- vP (h - ~$1 i- b,,' exp [-- v, (h - z)l c5) 
w fk, s; 2) = ego+ exp I- vp (h - z)l + d,,+ exp I- v, (h - 41 

a00 + = s2T_ {v,B exp !- v, (H - h)i + 
vbkiC exp I--- vb (II - h)l 

boo+ = Sti”_v, van exp [- v, (H - h)] + $4 =P f- vb(ff - h.11 

. 

coo +_ - -g aoO+, do,+ zz - 2. boo+ 
v s 

The method of inverting the tra~forman~ can be illustrated on one of the terms 
of the vertical component of the displacement field (5). We denote this term by w,, 

and first apply the inverse Fourier transformation 

w,, (s; x, 2) = -$$$ ?’ 

\ 
k” Ytt (33 .- VpYb) (0“ - 1) 

A@ 
exp (ii (k, s; x, z)) a’k (61 

--m 

f (k, 8; 2, 4 = -vu (H - h) - v, (h - z) + ikx 

we compute the integral (6) and other similar integrals using an asymptotic method 
which is found efficient in investigating forces rapidly varying with time which act on 
the medium. To separate the large parameter, in terms of inverse powers of which 

the solution is expanded, we perform the following change of variables: 

k = bv,s~ = av& (7) 

using (7) we can write all integrals of the type (6) describing the displacement comp- 
onents in the canonical form o. 

I (s; 2, =1) = J F (s; 5, 3, E) exp (- sii)f (5, 5, Q) dj (8) 
--n: 
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The amplitude and phase functions in (8) have singularities on the complex %-plane, 
and the relative distribution of these singularities depends on the relation connecting 

the rates of propagation of the waves through the elastic half-space and in the visco- 
elastic layer. In what follows, we shall assume that 

a>b>llv,>lfv, 

The roots of the equations T_ = 0 and A, = 0 and all branch points of the 

integrand function are distributed along the imaginary axis. From each branch point 

we produce a cut to infinity parallel to the real axis Re % . Deforming the contour 

of integration, we can reduce the integral (8) to a sum of residues, and a contour 
integral bypassing the cust. Leaving aside the problem of computing the residues 

(vrhich yield the static and the Rayleigh part of the displacement field), we shall con- 
sider a method of computing contour integrals which bypass the cuts and describe the 
propagation of the longitudinal and transverse waves. When the action of forces is 
sufficiently short, the pressure arising in the medium is mainly concentrated in the 

neighborhood of the fronts of the expanding waves, The assumption that s > 1 in 
(4), (5) and (8), enables us to investigate the displacements near the wavefronts and 

to apply the asymptotic methods to computing integrals of the type (8). Let us use 
the stationary phase method. A stationary point is determined from the condition 

f’ (z, z, g) = 0 , with the relation X = (H - h) tg a2 + (h - 4 tg PI, 

taken into account 

i sin fi, %c= b 

i sin a2 

= -233 

and is situated on the imaginary axis below the lowest branch point. The remaining 

displacement components were computed under the assumption that the following re- 

lation holds: 

sin flL sin flz 
~=----_=2: 
sinal sin a2 

where a, and b2 denote the angles of incidence of the longitudinal and transver- 
se waves from the half-space onto the interface z = h and a1 , fir are the angles 
of refraction of the longitudinal and transverse waves into the layer, The contour by- 

passing the cuts becomes a stationary contoudBCDE(see FigS) defined by the equa- 

tion 

Im [f (z, 2, %)I = Im if (3, 5 %A1 

Fig. 1 

When the condition hl H < 1 holds, 

the equation f’ (z, Z, %) = 0 has, in add- 

ition to %, shownabove, another solution 
EC’. The second stationary point &’ is 

situated on the imaginary axis near EC. 
Let us now assume that the condition h / 

H < 1 does not hold, and restrict ourselv- 
es to the case when only one stationary poi- 
nt is present. The distribution of the points 
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mentioned above and the stationary contour and shown in Fig. 1,and 

where un and un;are the Rayleigh wave velocities in the elastic and viscoelastic 
media, respectively. The point & falls between &, and & only when 43-l ( Y. 

integration along the small circle surrounding each stationary point yields the 

major contribution towards the integral along the stationary contour ABCDE , In 

the cases when the stationary contour intersects the cut emerging from some point’ Ei 
the contribution of the integral at the stationary point & should be supplemented by 

the integral around the point & at which the initial integral of the type (8) assumes 
a sharply defined maximum value. Using the standard method given in [Z] and retai- 

ning the principal term of the asymptotic expansion, we obtain 

%X (s, 2, 4 = W?,@) (XT, 2, 5,) + r‘%,(s) (2, 2, F;,, Es) (9) 

w::j (x, 2, &.) = -- P 
V 

Tm(5,) M+N@ 02--1 X 
T/G + RO 6%~ ?% 

+=P - sf (?Z, EC) - 
f -+-Of-g) 

f(5,2,&)= ~~1~~f7)5ecuz _+ B(h-bifs&sl , NC sin2fi1 

G==(h- 2) v cos2 a, set f&, R = (H - h) co2 f& set a, 

v=h 
CD (E,) = cos2 a2 sin” /3r eos & _--_- 

*@(f,) 
AI = [(Cl - V2 sin2 as) (v” - sin2 &f)“z 

l[n the transformant (9) and in its analogs for the other displacement components @ 
is the only variable dependent on the parameters of the Lapiace transform. The trans- 

formants invert exactly when 0 and the time (parameter s) are connected by a sim- 

ple relation, or invert approximately by expanding 0 into a series in inverse powers 

of S. 
Let e. g. on elastoplastic layer be filled by a Boltzmann-type medium. Then 

i t 

L+(E) = he - 
c 

Ql(t - z) E(Z) dz, .M {s,,) = p”kt - 

6 
i ’ Qz (t - 2) aIct (x) a’$ 
0 

and the volume and shear relaxation kernels are chosen in the form 

t 
Qa (t) = -+I --7 ) 

{ I Ql.(t) = $ Qz (t) 

The follow~g time relations hold within the field of transfOrman& 

1 1 
@=j_q' 'I='0 / ST0 -i.- 1 ' rlo = 

‘rhe exponential factor in (9) which contains 63 * can be written, with (10) taken in- 

to account, in the form 
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R-z 
cxp(-ssf(z,z, E,))= exp ySeca2t -g- ( h - z 3$ - 4qo 

f ‘+ 8bzo sto $- 1 

Bxpansions into series of the remaining expressions of (9) confining @ retain terms 
of the order of 8-x inclusive. Applying the inverse Laplace transformation [3], we 
obtain the final formula for the displacement along the OZ -axis (the formula is given 

for @ only) 

tug) (5, 3, 7) = P 
abt,M-+N K 
-y- dc + R a,l esp - rloo -$}H(r-T) x 

2 (z - Tfir [F (~)]-lexpI_-(i-T)IIF1(~,~,T-l.) i- 

N1-Gl E 
%(3%--4)+7-- A,’ 

] (z-YT)‘;‘[T (t)]-’ X 

exp[-(r-Y)]lF1 ( g,G, z-T 
)> 

h-z 
0 = - set g, 

bra 
+, 

T _ (H-h)=caz _i (h---zf=c& 

ar0 6 

N G+ZR 
N,=M +N , G1= 2(C+Rj , K3rl~va11coBazsin2g~cosB, 

E=M(1+4NeosB,cosaa)-22v?Veosz~1/1--2sin”an,- 

co9 61 
( 
-5cosasfW T/Iv”--sinsptI ) 

A/ = (COS & + 1/f - ~2 sin2R)*(v COST + 1/l va - sin” fil I) 

Here H (r) is the Heaviside function and *F1 (cc, B, a) is a degenerate hypergeomet- 
ric function. Taking into account the terms of the expansion of the order up to and 
including s-l, we can introduce the following diminesionless parameters: 

H h ” t CL0 
p 

-=z bz, = lie% bz, = "0% br, 0% -_=z -= 
2, 7 p rl0t po==p 

The properties of the viscoelastic medium and the type of the dynamic action, 
affect appreciably the parameters of the hypergeometric function which may, in some 

cases, degenerate into the elementary, Bessel and other functions. The formulas obt- 

ained using the above method describe the behavior of a viscoelastic medium near the 
fronts of the propagating waves, 
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